
I’m a big fan of the work,” says Chris Chang, a chemical biologist and solar fuels expert at the University of California, Berkeley, who was not involved in the study. “It provides a really nice demonstration that you can get high efficiency [in solar chemical conversion], which is a key step.”
The new fuels could also solve another crucial problem: renewable energy storage. As solar and wind power grow in use, researchers have begun looking for ways to store the excess energy such systems produce. Batteries are too expensive for storing more than nominal amounts. But energy-rich chemicals, which can be piped around and kept in chemical tanks, could store much more at a manageable price.
The new work got its start in 2011, when researchers led by Dan Nocera, a chemist at Harvard University, created an artificial leaf that used energy from sunlight to split water into oxygen and hydrogen gas (H2). H2 can then be run through a device called a fuel cell to produce electricity. But because its energy density is so low—thanks to its vapor state—any fuel produced requires massive storage tanks or high pressures to compress it into smaller, more manageable volumes.
Several research teams followed up by combining the H2 with the carbon in carbon dioxide (CO2) to produce energy-dense liquid hydrocarbons. Last year, for example, Nocera’s group reported that it developed a hybrid system that used bacteria and electricity to “stitch” together H2—generated from splitting water—and the carbon from CO2 into a liquid alcohol called isopropanol. But the setup had a problem. The catalyst used to split water was made from a nickel alloy that generated a form of highly reactive oxygen that killed the bacteria. The only solution was to use an unusually high voltage of electricity, which produced fewer reactive oxygen molecules. It also sharply reduced the efficiency of converting the energy in the electricity to chemical bonds in the fuel. In the end, the system converted only 3.2% of the input energy into chemical fuel.
Read the rest
From ScienceMag.org
By Robert F. Service
No comments:
Post a Comment